Planning

Planning

Planning finds sequence of actions that achieves a given goal when performed starting in a
given state.

¢ We studied how to take actions in the world (search)

* We studied how to represent objects, relations, etc. (logic)

e Planning combine the two!

Planning vs. Problem solving
1- In planning, states and goals are represented by sentences: Have(milk). Actions are
represented by rules: preconditions and effects. Buy(x) 2> Have(x).
2- In planning, goals are independent, thus can be solved by “divide-and-conquer” strategy.
Have(milk) A Have(banana).
3- Planner is free to add action whenever they are needed, rather than in an incremental
sequence of search.

Blocks World Problem
In the blocks world, the planner finds a sequence of actions that achieve the goal: a on b, and b
on c.

a
¢ > b
a b c

1 1 1 __] [1 1 L J
1 2 3 4 1 2 3 4

For the above example, we have two relationships:
- On(Block, Object).
- sClear(Object).

STRIPS Language
1- States are list of conjunctive relationships that are currently true.
- Initial state: [clear (2) A clear(4) / clear(b) A clear(c) A on(c,a) A on(a,1) A on(b,3)].
- Goals are defined as: [on (a,b) A on (b,c)].
2- Any actions that are not mentioned in the states are assumed to be false. Ex: from the
initial state, we get Tclear(3) N Tclear(1) A ...
3- Each action is defined by two terms:
- Precondition: the conditions that has to be satisfied for the action to be possible.
- Effect. the effect of the action either adds relationships or deletes some of them.

For example, the action move(b,3,c) (move block b from location 3 to block c).
- Precondition: [cleat(b) A clear(c) on(b,3)].
- Effect: add the relationships on(b,c) and clear(3), and delete on(b,3) and clear(c).

Thus the new state is:
[on(b, ¢), clear(3), clear(2), clear(4), clear(b), on(a,1), on(c, a)]

Dr. Ayad Ibrahim, Computer Sci. dept. Education college, Basrah University, 2016-2017. 1

Planning

The effects of an action can be:
1- Positive: add some relationships.
2- Negative: delete some relationships

Preconditions of action Action when condition Cond is true will be defined by the predicate:
Can(Action, Cond).

The effects of action will be defined by two predicates:
adds(Actions, Addrels), where Addrels is a list of added relationships.
delete(Action, Delrels), Dlrels is a list of removed relationships.

The goal of a plane can be a list of relationships: [on(a,b), on(b,c)].

For the blocks world actions will be of the form:
Move(Block, From, To), where Block is the block to be moved, From is position, and To is
the new position.

% Definition of action move(Block, From, To) in blocks world
% can(Action, Condition): Action possible if Condition true

can(move(Block, From, To), [clear(Block), clear(To), on(Block, From)]) :-

block(Block), % Block to be moved

object(To), % 'To' is a block or a place

To \== Block, % Block cannot be moved to itself
object(From), % 'From' is a block or a place
From \== To, % Move to new position

Block \== From. % Block not moved from itself

% adds(Action, Relationships): Action establishes Relationships
adds(move(X,From,To), [on(X,To), clear(From)]).
% deletes(Action, Relationships): Action destroys Relationships
deletes(move(X,From,To), [on(X,From), clear(To)]).
object(X) :- % X is an object if

place(X) % X is a place

’ % or
block(X). % X is a block

% A blocks world

block(a).
block(b).
block(c).
place(1).
place(2).
place(3).
place(4).
% A state in the blocks world
%
%
%
%
% place 1 2 3 4

statel([clear(2), clear(4), clear(b), clear(c), on(a,1), on(b,3), on(c,a)]).
Dr. Ayad Ibrahim, Computer Sci. dept. Education college, Basrah University, 2016-2017.

| & 0
<

Planning

The Planner work
Suppose the goal on(a,b).
The planner would reason as follows:
1- find the action move(a, From, b).
2- loock at the predicate can to find the action’s preconditions:|clear(a), clear(b), on(a,
From)]., clear(a) is not true, so the planner consider clear(a) as new goal to be achieved.
3- Look at the adds relation again to find action that achieves clear(a). This can any action
of the form: move(Block, a, To).
4- The precondition for this action is [clear(Block), clear(To), on(Block,a)]
This is satisfied in our initial situation if: Block=c and To=2.
5- the action move(c,a,2) will generate the state
[clear(a), clear(b), clear(c), clear(4), on(a,1), on(b,3), on(c,2)]
6- now the action move(a,1,b) can be executed to find the final goal on(a, b).
7- the plan is [move(c,a,2), move(a,1,b)].

To solve a list of goals Goals in the state State, leading to the state Finalstate, do:

If all Goals are true in the state State then Finalstate =State. Otherwise do:

1- select unsolved goal in Goals.

2- Find an action Action that adds Goal to the current state.

3- Enable Action by solving the precondition Condition of Action, giving Midstatel.
4- Apply Action to Midstatel, giving Midstate2.

5- Solve Goals in Midstate2, leading to Finalstate.

This programmed in prolog as the procedure:

Plan(State, Goals, Plan, Finalstate)

Where state: the initial state, Finalstate: the final state, Goals: the list of goals, Plan: list of
actions that achieves the goals.

If we asked the above program the query:
°- state](Start), plan(Start, [on(a,b), on(b,c)], Plan,_).
The program may answer:

Plan= [move(c,a,2), move(b,3,a), move(b, a, ¢), move(a,1,b)] !l (use four moves and the second
one does not make sense).

The reason for this bad planning is that goals are achieved one by one in a linear order (Znear
planning). So, key to ensure optimal plans is to enable interaction between different goals. This is
done through the mechanism of goa/ regression.

Dr. Ayad Ibrahim, Computer Sci. dept. Education college, Basrah University, 2016-2017. 3

Planning

% plan(State, Goals, Plan, FinalState)

plan(State, Goals, [], State) :- % Plan empty
satisfied(State, Goals). % Goals true in State
plan(State, Goals, Plan, FinalState) :-
conc(Plan, _,), % Try plans of increasing length
conc(PrePlan, [Action | PostPlan], Plan), % Divide Plan to PrePlan, Action and PostPlan
select(State, Goals, Goal), % Select a goal
achieves(Action, Goal), % Relevant action
can(Action, Condition),
plan(State, Condition, PrePlan, MidStatel), % Enable Action
apply(MidStatel, Action, MidState2), % Apply Action

plan(MidState2, Goals, PostPlan, FinalState). % Achieve remaining goals
% satisfied(State, Goals): Goals are true in State

satisfied(State, []).

satisfied(State, [Goal | Goals]) :-
member(Goal, State),
satisfied(State, Goals).

select(State, Goals, Goal) :-
member(Goal, Goals),
\+ member(Goal, State). % Goal not satisfied already

% achieves(Action, Goal): Goal is in add-list of Action

achieves(Action, Goal) :-
adds(Action, Goals),
member(Goal, Goals).

% apply(State, Action, NewState): Action executed in State produces NewState

apply(State, Action, NewState) :-
deletes(Action, DelList),
delete_all(State, DelList, Statel), !,
adds(Action, AddList),
conc(AddList, Statel, NewState).

9% delete_all(L1, L2, Diff) if Diff is set-difference of L1 and L2
delete_all([], _, [D-

delete_all([X | L1], L2, Diff) :-
member(X, L2), !,
delete_all(L1, L2, Diff).

delete_all([X | L1], L2, [X | Diff]) :-
delete_all(L1, L2, Diff).

Dr. Ayad Ibrahim, Computer Sci. dept. Education college, Basrah University, 2016-2017.

